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NOTE

This ESM was rendered using custom R functions available on this GitHub repository:

https://github.com/ercrema/repunitprobs

Simulation 1: Modifiable Temporal Unit Problem

Consider the following logistic population dynamic, where a major population increase occurs between 600
and 500 BC.
age = seq(300,800,1)
asymptote = 0.9
sl = 0.04
midpoint = 550
p = 0.1+asymptote / (1 + exp((midpoint - age) * sl))
d=data.frame(yr=rev(age),p=p)
plot(d$yr,d$p,xlim=c(800,300),type='l',ylim=c(0,1),xlab="BC",ylab="",axes=FALSE)
axis(1,at=seq(800,300,-100))
mtext(side=2,"Population Size",line=1.1)
box()
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We first simulate 1,000 arhcaeological events that occured with frequencies directly proportional to such
population dynamic. For example:
n=1000
set.seed(123)
ss = round(sample(d$yr,size=1000,prob=d$p/sum(d$p),replace=TRUE))
hist(ss,xlim=c(800,300),breaks=seq(300,800,50),xlab="BC",

col='darkorange',border='lightgrey',freq=T,main='')
lines(d$yr,(d$p/(sum(d$p))*n*50),lwd=2,lty=2) #True Population Curve
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Although some discrepancy can be observed due to sampling error the observed density of sampled events
and the underlying population are identical.

The Effect of Periodisation

We emulate an archaeological periodisation process by replacing the time-stamp of each event to the
membership to an archaeological phase. For example, suppose phase A had a temporal span of 800 to 701,
and phase B between 700 and 401, and phase C between 400 and 300.

phases = cut(ss,breaks=c(800,700,400,300),labels=c("C","B","A"),include.lowest = TRUE)
#labels are in reverse order since dates are in BC

table(phases)

## phases
## C B A
## 379 585 36

Thus in this case there are 36 events assigned to phase A, 585 to phase B, and 379 to phase C.

Aoristic Analysis + Monte-Carlo Approach

There is a number of closely related developed in the last decade designed to analyse frequency data based on
archaeological periodisation. One such approach consists of assigning probabilistic weights to individual events
for a given temporal interval. This approach is at the basis of aoristic analysis, where time is divided into
equally sized blocks, and weights are computed under the assumption of a uniform probability distribution
within assigned phase(s). Thus if we use blocks of 50 years, we would obtain the following:
# Extract number of cases
An =table(phases)['A']
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Bn =table(phases)['B']
Cn =table(phases)['C']

# Create a weight matrix
weights = matrix(NA,nrow=n,ncol=10) #10 blocks of 50 years

# Assign weights
weights[1:An,] = rep(c(50/100,50/100,0,0,0,0,0,0,0,0),each=An)
weights[(An+1):(An+Bn),] = rep(c(0,0,50/300,50/300,50/300,50/300,50/300,50/300,0,0),each=Bn)
weights[(An+Bn+1):(An+Bn+Cn),] = rep(c(0,0,0,0,0,0,0,0,50/100,50/100),each=Cn)

# Compute Aoristic Sum
asum = apply(weights,2,sum)

# Visualise
midPoints = seq(775,325,-50)
plot(midPoints,asum,xlim=c(800,300),type='b',pch=20,xlab="BC",ylab="Aoristic Sum")
lines(d$yr,(d$p/sum(d$p)*n*50),lwd=2,lty=2,col='darkblue')
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Aoristic sums do not provide, however, any measure of chronological uncertainty making hard to discern, for
example, whether flat portions of the curve are the result of genuine stability in the frequency of events or the
result of higher levels of uncertainty. To overcome this issue, and alternative approach consist of employing
Monte-Carlo simulation:
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nsim =1000 #number of simulations
mat=matrix(NA,nrow=10,ncol=nsim)

# simulate dates and aggregate by 50 year blocks
for (s in 1:nsim)
{

simdates = c(round(runif(An,min=701,800)),round(runif(Bn,401,700)),round(runif(Cn,300,400)))
cnts = cut(simdates,breaks=seq(300,800,50),include.lowest = T)
mat[,s]=as.numeric(rev(table(cnts))) # reverse order as dates are in BC

}

#make spaghetti plot with 100 random simulations
avg = apply(mat,1,mean)
plot(0,0,type='n',xlab='BC',ylab='Number of Events',xlim=c(800,300),ylim=range(mat))
apply(mat[,sample(1:1000,size=100)],2,lines,x=midPoints,col=rgb(0,0,0,0.05)) #

## NULL
lines(midPoints,avg,type='b',pch=20)
lines(d$yr,(d$p/sum(d$p)*n*50),lwd=2,lty=2,col='darkblue')
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The average time-series extracted from the Monte-Carlo simulations is comparable to the result of the aoristic
analysis, but showcases the extent of chronological uncertainty between 700 and 400 BC (i.e. phase B). More
importantly, because of the assumption of uniform probability distribution, both methods fail to identify
correctly the major population growth event between 600 and 500 BC. The extent of this bias depends on
the resolution of the archaeological periodisation in relation to the scale of the population dynamic of interest
and the extent by which shifts in frequencies co-occur with changes in archaeological phases.

The script below utilises the function mcsim() (which automatise the workflow described above) to generate
different time-series with the Monte-Carlo method under different numnbers and position of archaeological
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phases When the transition between archaeological periods are alligned with major shifts in the frequency of
evens (e.g. panels a and c), or when the resolution of the phases are sufficiently fine-grained (e.g. panel f )
the time-series obtained with the Monte-Carlo method recovers much of the features of the true population
dynamics (shown in dashed red line). However when the resolution is coarse or when the shift from one
archaeological period to another is not associated with changes in population density (e.g. panels b, d and e)
the time-series will be biased in identifying the correct timing and magnitude of specific population dynamic:
resolution=50 #define time-block resolution
# Extract min-max from theorethical model
m=min((d$p/sum(d$p)*n*resolution))
M=max((d$p/sum(d$p)*n*resolution))

#Consider different periodisations:
LL = list(c(800,550,300),

c(800,700,300),
c(800,600,500,300),
c(800,400,300),
c(800,700,400,300),
c(800,700,600,500,400,300))

par(mfrow=c(3,2),mar=c(5,5,1,1))
for (i in 1:length(LL))
{

breaks=LL[[i]]
tmp=mcsim(x=ss,nsim=1000,breaks=breaks,resolution=50)
avg = apply(tmp,1,mean)
plot(0,0,type='n',xlab='BC',ylab='Number of Events',

xlim=c(800,300),ylim=c(0,250),axes=FALSE)
axis(1)
axis(2)
apply(tmp[,sample(1:1000,size=100)],2,lines,x=midPoints,col=rgb(0,0,0,0.05)) #
lines(midPoints,avg,type='b',pch=20)
lines(d$yr,(d$p/sum(d$p)*n*50),lwd=2,lty=2,col='darkred')
legend("bottomright",legend=letters[i],bty='n',cex=2)

for (b in 1:(length(breaks)))
{

col='lightgrey'
if (as.logical(b%%2)){col='darkgrey'}
rect(xleft=breaks[b],xright=breaks[b+1],ybottom=210,ytop=250,border=NA,col=col)
text(x=breaks[b+1]+(breaks[b]-breaks[b+1])/2,y=230,labels=as.roman(b))

}

}
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Simulation 2: Duration

Consider a time-series recording the number of simultaneously occupied mines over a 1,000 years interval
(1750-750 BC). Suppose this number to be constant (n = 100) but with the duration of occupation of the
mines to be a linear function of time. More formally we model the duration of each mine as a random draw
from a negative binomial distribution with the dispersion parameter α equal to 1 and mean µ equal to

µ(t) = −132.50 +−0.19t

with t between -1750 and -750. Here we limit µ to bet between 10 and 200 (i.e. if the result of the equation is
below 10, µ is set to 10, if above 200, µ is set to 200). The R script below generates a 100 simulated dataset
under these conditions:
## Parameters Setup
edgec <- 500 # Add +/-500 years to avoid edge effects
years <- c(-1750:-750) #Simulation Interval
simyears <- c((years[1]-edgec) : (years[length(years)]+edgec))
nmines <- 100 #Number of mines in a given yers
minepreallocation <- 10000

mDurationMax <- 200 #Maximum Duration of Sites
mDurationMin <- 10 #Minimum Duration of Sites
df <- data.frame(x=c(years[1],years[length(years)]),

y=c(mDurationMax,mDurationMin))
mod <- lm(y~x, data=df) #

## Simulate
usemodel <- TRUE
nsim <- 100
simmat <- matrix(nrow=length(simyears), ncol=nsim)
set.seed(100)

for (b in 1:nsim){
minedf <- data.frame(StartBCE=c(rep(simyears[1],nmines),

rep(NA,(minepreallocation-nmines))),
EndBCE=NA, Duration=NA, Mu=NA, Active=FALSE)

minedf$Duration[!is.na(minedf$StartBCE)] <- rnbinom(nmines, mu=200, size=1)
minedf$EndBCE <- minedf$StartBCE + minedf$Duration
for (a in simyears){

check1 <- minedf$StartBCE <= a & !is.na(minedf$StartBCE)
check2 <- minedf$EndBCE >= a & !is.na(minedf$EndBCE)
minedf[,"Active"] <- FALSE
minedf[check1 & check2,"Active"] <- TRUE
checksum1 <- 100-sum(minedf$Active)
if (checksum1 > 0){

myrows <- which(is.na(minedf$StartBCE))[1:checksum1]
minedf$StartBCE[myrows] <- a
if (usemodel){

mu <- as.numeric(coefficients(mod)[1]) +
(as.numeric(coefficients(mod)[2]) * a)

if (mu > mDurationMax){
mu <- mDurationMax

} else if (mu < mDurationMin){
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mu <- mDurationMin
}

} else {
mu <- 200

}
mu <- round(mu,0)
minedf$Mu[myrows] <- mu
minedf$Duration[myrows] <- rnbinom(checksum1, mu=mu, size=1)
minedf$EndBCE[myrows] <- minedf$StartBCE[myrows] +

minedf$Duration[myrows]
}

}
minedf <- minedf[!is.na(minedf$StartBCE),]
nrow(minedf)
minedf$MidYear <- minedf$StartBCE+round(minedf$Duration/2,0)
tmp <- density(minedf$MidYear, n=length(simyears),

from=simyears[1],to=simyears[length(simyears)])$y
simmat[,b] <- tmp

}
mediankd <- apply(simmat,1,median)

The figure below compares the life-span of a sample of 1000 sites from one simulation (top panel) along with
µ(t) (dashed orange line), against the number of those occupied at a given moment in time (middle panel)
and the frequency of mid points (lower panel).
set.seed(121)
par(mfrow=c(3,1),mar=c(0,4,3,4))
plotSUB=minedf[sample(1:nrow(minedf),size=1000),]
plot(0,0,type='n',xlim=c(-1800,-700),ylim=c(0,nrow(plotSUB)+1),

axes=FALSE,ylab='',xlab='Year BC')
for (i in 1:nrow(plotSUB))
{

lines(x=c(plotSUB$StartBCE[i],plotSUB$EndBCE[i]),y=c(i,i),lwd=0.5)
points(x=c(plotSUB$StartBCE[i],plotSUB$EndBCE[i]),y=c(i,i),pch=20,cex=0.4)
points(x=plotSUB$MidYear[i],y=i,pch=20,col='red',cex=0.6)

}
par(new=TRUE)
plot(0,0,type='n',xlim=c(-1800,-700),ylim=c(10,200),

axes=FALSE,ylab='',xlab='')
abline(mod,lty=2,col='darkorange',lwd=1.5)
axis(4,at=c(10,100,150,200))
mtext(4,line=2.5,text = expression(mu),las=2)

tseq=seq(-1800,-700,1)
contemp=numeric(length=length(tseq))
for (t in 1:length(tseq))
{

contemp[t] = sum(plotSUB$StartBCE < tseq[t]& plotSUB$EndBCE > tseq[t])
}

plot(tseq,contemp,type='l',axes=FALSE,ylim=c(0,40),xlim=c(-1800,-700),
ylab='N Occupied sites')

axis(side=2)
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par(mar=c(4,4,3,4))
bseq=seq(-1800,-600,100)
freq=table(cut(plotSUB$MidYear,breaks = bseq))
plot(0,0,type='n',axes=FALSE,ylim=c(0,max(freq)),xlim=c(-1800,-700),

ylab='Frequency of MidPoints')
for (i in 2:(length(bseq)-1))
{

rect(xleft=bseq[i-1],xright=bseq[i],ybottom=0,
ytop=freq[i],border=NA,col='lightblue')

}
axis(2)
axis(1,at=seq(-1800,-600,200),labels=seq(1800,600,-200))

10



Year BC

10
10

0
15

0
20

0

µ

tseq

N
 O

cc
up

ie
d 

si
te

s

0
10

20
30

40

0

F
re

qu
en

cy
 o

f M
id

P
oi

nt
s

0
50

10
0

15
0

1800 1600 1400 1200 1000 800

Ignoring duration and treating each site occupation as a point (rather than a line) in time creates a false
impression of a increase in the number of sites. The figure below further demonstrates this point by comparing
the true density of site frequency (dashed red line) against an envelope of density lines of midpoint frequency
across the full 100 simulations.
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plot(simyears, mediankd, type="l", xlim=c(-1750,-751),
xlab="Years BC", ylab="",axes=FALSE)

axis(1,at=seq(-1600,-800,+200),labels=seq(1600,800,-200))
axis(2)
box()

for (d in 1:ncol(simmat)){
lines(simyears,simmat[,d], col=rgb(191,191,191,alpha=75,max=255))

}
abline(h=1/length(simyears), col="red", lty="dashed")
lines(simyears,mediankd, col="black")
legend("topleft",

legend=c("actual mine density", "simulated densities","median simulated"),
col=c("red", "grey75","black"), lwd=c(1,1,1),
lty=c("dashed","solid","solid"), bty="n", cex=1)
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Simulation 3: Nucleation/Dispersal Bias

Setup

Consider two hypothethical archaeological periods, α and β, with equal durations in time. Our objective is
to investigate the percentage change in the number of residential units across the two periods. More formally
we are intested in estimating 100 × (Nβ − Nα)/Nβ where Nα and Nβ are the total number of residential
units for each period. Our residential units are however spatially orgaised into sites (i.e. settlements) with
different sizes, and that our sampling is conditioned by such structure. More specifically, we assume that
sampling occurs at the level of site and not each individual residential unit, and that we are able to recover
only a fraction r of sites, where r = k/K, where k is observed number of sites across the two periods in our
sample and K is the number of sites across the two periods in the population. Finally, we assume that the
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probability of each site being sampled is defined by the following equation:

πi = Sbi∑K
j=1 S

b
j

where πi is the probability of selecting a site with size Si, K is the total number of sites, and 0 ≤ b ≤ 1. The
exponent b is bias parameter that conditions the probability of a site to be sampled as a function of its size.
When b = 0, all sites have the same chance of being included in the sample, but when b > 0 larger sites have
a higher probability of being selected.

The figure below shows the impact of different values of b with a hypothethical dataset with K = 6 and site
sizes S1 = 200, S2 = 100, S3 = 50, S4 = 20, S5 = 20, and S6 = 10.
par(mar=c(5,4,3,4))
S=c(200,100,50,20,20,10)
b=c(0,0.2,0.5)
barplot(S,names.arg=c(1:6),col="grey",width=1,space=0.2,border=NA,xlab="Sites")
mtext(side=2,line=3,"S",las=2)
par(new=T)
plot(x=seq(from=0.5/7,by=1.2/7,length.out =6),

y=S^b[1]/sum(S^b[1]),type='b',pch=20,col='orange',
axes=F,xlab="",ylab="",xlim=c(0,1),ylim=c(0,0.4))

lines(x=seq(from=0.5/7,by=1.2/7,length.out = 6),
y=S^b[2]/sum(S^b[2]),type='b',pch=20,col='red')

lines(x=seq(from=0.5/7,by=1.2/7,length.out = 6),
y=S^b[3]/sum(S^b[3]),type='b',pch=20,col='darkred')

legend("topright",legend=c("b=0","b=0.2","b=0.5"),
pch=20,lwd=1,col=c('orange','red','red'),bty='n')

axis(side=4,at=c(0,0.1,0.2,0.3,0.4))
mtext(side=4,line=3,expression(pi),las=2)
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Simulation Experiment

What is the combined impact of the non-random sampling regime described above when the two periods
α and β are characterised by a different settlement size distribution which we might expect in case of
nucleation/dispersal shifts? Here we employ a simple tactical simulation where we: 1) generate artificial
settlements for two hypothethical archaeological periods; 2) sample a fraction r of settlements using different
degrees of site-size bias b; and 3) compute the observed percentage change in the number of residential units.
For period α the site size distribution would be approximately log-normal with µ = 3 and σ = 1 whilst
for period β the size distribution would be approximately uniform. The function sim.settlement() will
generate the artificial settlements ensuring that the total number of residential units for the two periods are
the same.

For example:
set.seed(224)
result=sim.settlement(K1=300,K2=300,mu=3,sigma=1)
par(mfrow=c(1,2))
hist(result$t1,xlab="Settlement Size",main=expression(paste("period ", alpha)),col='lightblue')
hist(result$t2,xlab="Settlement Size",main=expression(paste("period ", beta)),col='lightblue')
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# Total number of residential units for each period
sum(result$t1)

## [1] 10307
sum(result$t2)

## [1] 10307

To consider different scenarios we consider sampling fractions r = {0.1, 0.3, 0.7} and sampling biases b =
{0, 0.3, 0.7}. In all case we consider K1 = K2 = 1000 and run 1,000 repetitions for each of the nine parameter
combinations.
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set.seed(123)
simdata = sim.settlement(K1=1000,K2=1000)
nsim = 100
b = c(0,0.3,0.7)
r = c(0.1,0.3,0.7)
params=expand.grid(r=r,b=b,nsim=1:nsim)
params$pr=NA

for (i in 1:nrow(params))
{

params$pr[i]=biasedsampling(simdata,r=params$r[i],b=params$b[i])
}

# Plot results
plot(0,0,type='n',xlab=c("b (Sampling Bias)"),

ylab="Observed Percentage Change",xlim=c(0.5,3.5),
ylim=range(params$pr),axes=FALSE)

colSeq=c("darkblue","darkorange","darkgrey")
alpha=0.2
colSeq2=c(rgb(0,0,0.54,alpha),rgb(1,0.55,0,alpha),rgb(0.66,0.66,0.66,alpha))
mids=c(0.75,1,1.25)
for (i in 1:length(b))
{

for (j in 1:length(r))
{

bb=b[i]
rr=r[j]
y = subset(params,b==bb&r==rr)$pr
points(x=i-1+runif(100,mids[j]-0.05,mids[j]+0.05),y=y,pch=20,col=colSeq2[j])
rect(ybottom=quantile(y,0.25),ytop=quantile(y,0.75),

xleft=i-1+mids[j]-0.07,xright=i-1+mids[j]+0.07,border=colSeq[j])
lines(x=c(i-1+mids[j]-0.07,i-1+mids[j]+0.07),

y=c(median(y),median(y)),lwd=2,col=colSeq[j])
}

}

axis(1,at=c(-2,1,2,3,4),labels=c(NA,0,0.3,0.7,NA))
axis(2)
abline(h=0,lty=2,lwd=1)
text(x=3,y=3,labels="True Percentage Change",cex=0.8)
legend("topright",bty='n',legend=c("r=0.1","r=0.3","r=0.7"),

col=c("darkblue","darkorange","darkgrey"),
pch=20,title = "Sampling Fraction")
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